Quantum chemical “Aufbau” principles: how to estimate the shape of highly flexible (bio-)polymers? A recursively extendable “chemion picture” of Euler-Hückel-type

Author:

Koch Wolfhard H. G.

Abstract

Abstract An outline is given of how to split the n-dimensional space of torsion angles occurring in flexible (bio-)polymers (like alkanes, nucleic acids, or proteins, for instance) into n one-dimensional potential curves. Forthcoming applications will focus on the “protein folding problem,” beginning with polyglycine. Context In accordance with Euler’s topology rules, molecules are considered to be composed of “vertices” (atoms, ligands, bonding sites, functional groups, and bigger fragments). Following Hückel, each vertex is represented by only one basis function. Starting from the “monofocal” hydrids $$\text {CH}_{4}$$ CH 4 , $$\text {NH}_{3}$$ NH 3 , $$\text {OH}_{2}$$ OH 2 , FH, and $$\text {SiH}_{4}$$ SiH 4 , $$\text {PH}_{3}$$ PH 3 , $$\text {SH}_{2}$$ SH 2 , ClH as anchor units, “chemionic” Hamiltonians (of individual “chemion ensembles” and proportional nuclear charges) are constructed recursively, together with an appropriate basis set for the first five (normal) alkanes and some related oligomers like primary alcohols, alkyl amines, and alkyl chlorides. Methods Standard methods (“Restricted Hartree-Fock RHF” and “Full Configuration Interaction FCI”) are used to solve the various stationary Schrödinger equations. Two software packages are indispensable: “SMILES” for integral evaluations over Slater-type orbitals (STO), and “Numerical Recipes” for matrix diagonalizations and inversions. While managing with only two-center repulsion integrals, “implicit multi-center integrations” lead us to the non-empirical fundament of Hoffmann’s “Extended-Hückel Theory.”

Funder

Eberhard Karls Universität Tübingen

Publisher

Springer Science and Business Media LLC

Reference118 articles.

1. “Vertex” is a technical term of Eulerian topology and graph theory. Most prominent is Euler’s formula for convex polyhedra: $$V+F=E+2$$, where $$V, F, E$$ stand for the numbers of vertices (or corners), faces, and edges, respectively [2–4]

2. Spanier EH (1966) Algebraic topology. McGraw-Hill, New York & London, p 205

3. Flegg HG (2001) From geometry to topology. Dover, Mineola N.Y., p 40

4. Richeson DS (2008) Euler’s gem: the polyhedron formula and the birth of topology. Princeton University Press

5. van’t Hoff JH (1874) Sur les formules de structure dans l’espace. Arch Néerl Sci Ex Nat 9:445–454

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3