Author:
Caballero Mena Josefa,Rocha Martín Juan,Sadarangani Kishin
Abstract
AbstractFrom a fixed point theorists’ view, Hutchinson considered a fractal set as a fixed point problem and applied the Banach contraction principle to prove its existence. In this paper, we present a result about the existence of fractal for a finite iterated condensing function using the degree of nondensifiability.
Funder
Universidad de las Palmas de Gran Canaria
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Geometry and Topology,Modeling and Simulation
Reference21 articles.
1. Hutchinson, J.E.: Fractals and self-similarity. Indiana Univ. Math. J. 30, 713–747 (1981)
2. Dumitru, D.: Generalized iterated function systems containing Meir–Keeler functions. Ann. Univ. Bucuresti Mat. LVII I, 3–15 (2009)
3. Fernan, H.: Infinite iterated function systems. Math. Nachr. 170, 79–91 (1994)
4. Gwóźdź-Lukowska, G., Jackymski, J.: The Hutchinson–Barnsley theory for infinite iterated function systems. Bull. Aust. Math. Soc. 72, 441–454 (2005)
5. Klimek, M., Kosek, M.: Generalized iterated function systems, multifunctions and Cantor sets. Ann. Polon. Math. 96, 25–41 (2009)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Densifiability in hyperspaces;Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas;2024-01-31