Abstract
AbstractFormic acid dimer as the prototypical doubly hydrogen-bonded gas-phase species is discussed from the perspective of the three translational and the three rotational degrees of freedom which are lost when two formic acid molecules form a stable complex. The experimental characterisation of these strongly hindered translations and rotations is reviewed, as are attempts to describe the associated fundamental vibrations, their combinations, and their thermal shifts by different electronic structure calculations and vibrational models. A remarkable match is confirmed for the combination of a CCSD(T)-level harmonic treatment and an MP2-level anharmonic VPT2 correction. Qualitatively correct thermal shifts of the vibrational spectra can be obtained from classical molecular dynamics in CCSD(T)-quality force fields. A detailed analysis suggests that this agreement between experiment and composite theoretical treatment is not strongly affected by fortuitous error cancellation but fully converged variational treatments of the six pair or intermolecular modes and their overtones and combinations in this model system would be welcome.
Funder
Deutsche Forschungsgemeinschaft
Fonds der Chemischen Industrie
Publisher
Springer Science and Business Media LLC
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献