Perspective on experimental evaluation of adsorption energies at solid/liquid interfaces

Author:

Zeradjanin Aleksandar R.,Spanos Ioannis,Masa Justus,Rohwerder Michael,Schlögl Robert

Abstract

AbstractAlmost 15 years ago, first papers appeared, in which the density functional theory (DFT) was used to predict activity trends of electrocatalytic reactions. That was a major contribution of computational chemistry in building the theory of electrocatalysis. The possibility of computational electrocatalyst design had a massive impact on the way of thinking in modern electrocatalysis. At the same time, substantial criticism towards popular DFT models was developed during the years, due to the oversimplified view on electrified interfaces. Having this in mind, this work proposes an experimental methodology for quantitative description of adsorption energies at solid/liquid interfaces based on the Kelvin probe technique. The introduced approach already gives valuable trends in adsorption energies while in the future should evolve into an additional source of robust values that could complement existing DFT results. The pillars of the new methodology are established and verified experimentally with very promising initial results.

Funder

Max Planck Institute for Chemical Energy Conversion

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Electrochemistry,Condensed Matter Physics,General Materials Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3