Comparative life cycle assessment of sequential chemical and electrochemical processes for the treatment of industrial textile wastewater

Author:

Salazar-Sogamoso Luis MiguelORCID,Gómez-García Miguel-ÁngelORCID,Dobrosz-Gómez IzabelaORCID

Abstract

AbstractFenton-based processes, chemical and electrochemical, have attracted the interest of industrial and academic researchers for wastewater treatment. However, the deficiency of rigorous comparison between different methods, including assessment of their impact on the environment, has hindered their large-scale application. This study reports for the first time on the sustainability of raw textile wastewater treatment through two sequential processes, Coagulation-Flocculation-Fenton-Neutralization (CF-F-N) and Coagulation-Flocculation-Electro-Fenton-Neutralization (CF-EF-N), based on Life Cycle Assessment (LCA) approach. The CF-F-N and CF-EF-N were optimized at laboratory scale and compared through LCA, using the IPCC-2013 and ReCiPe-2016 midpoint and endpoint methods. The highest CO2 emissions relied on the wastewater primary treatment by CF. This due to the high amount of hazardous sludge generated and the technology necessary for its disposal (i.e., 16.89 kg CO2-Eq/FU for underground deposit in security cells or 47.52 kg CO2-Eq/FU for incineration) as well as the consumption of reagents required for the treatment (alum, 7.72 kg CO2-Eq/FU; and slaked lime, 5.56 kg CO2-Eq/FU). Regarding the sequential processes, the EF-N presented lower carbon footprint (CFP) than the F-N (14.74 kg CO2-Eq/FU vs. 20.74 kg CO2-Eq/FU). Electricity (87.02% of the total CFP) and reagents (88.63% of the total CFP) denoted the main environmental hotspot during the EF-N and F-N, respectively. The EF-N, compared to the F-N, had an inferior incidence in 14 of the 18 impact categories analyzed using the ReCiPe-2016 method at the midpoint level. This is the result of low consumption of reagents and auxiliary chemicals. The electricity was also found as main environmental hotspot of the EF-N. The ReCiPe-2016 method at the endpoint level showed that the EF-N resulted in lower environmental load in all impact categories. The economic performance (11.91 USD/m3 for CF-EF-N vs. 13.66 USD/m3 for CF-F-N) and LCA demonstrated the competitiveness of the electrochemical sequential process compared to the chemical one. The CF-EF-N can be considered more environmentally sustainable technology.

Funder

Ministerio de Ciencia, Tecnología e Innovación

Universidad Nacional de Colombia, Sede Manizales

National University of Colombia

Publisher

Springer Science and Business Media LLC

Reference100 articles.

1. Naciones Unidas – Impacto académco (2024) Sostenibilidad. https://www.un.org/es/impacto-academico/sostenibilidad. Accessed 22 Jun 2024

2. Atia NG, Bassily MA, Elamer AA (2020) Do life-cycle costing and assessment integration support decision-making towards sustainable development? J Clean Prod. https://doi.org/10.1016/j.jclepro.2020.122056

3. Ribeiro JP, Sarinho L, Nunes MI (2024) Application of life cycle assessment to Fenton processes in wastewater treatment – a review. J Water Process Eng. https://doi.org/10.1016/j.jwpe.2023.104692

4. Market analysis report (2024) Textile market size & trends. https://www.grandviewresearch.com/industry-analysis/textile-market. Accessed 22 Jun 2024

5. Departamento Administrativo Nacional de Estadística (DANE) (2023) Boletín Técnico Producto Interno Bruto (PIB). https://www.dane.gov.co/index.php/estadisticas-por-tema/cuentas-nacionales. Accessed 22 Jun 2024

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3