Aqueous spray-drying synthesis of alluaudite Na2+2xFe2−x(SO4)3 sodium insertion material: studies of electrochemical activity, thermodynamic stability, and humidity-induced phase transition

Author:

Barman Pubali,Dwibedi Debasmita,Jayanthi K.,Meena Sher Singh,Nagendran Supreeth,Navrotsky Alexandra,Barpanda PrabeerORCID

Abstract

AbstractIn pursuit of high-energy density sodium insertion materials, polyanionic frameworks can be designed with tuneable high-voltage operation stemming from inductive effect. Alluaudite Na2Fe2(SO4)3 polysulfate forms one such earth-abundant compound registering the highest Fe3+/Fe2+ redox potential (ca. 3.8 V vs. Na/Na+). While this SO4-based system exhibits high voltage operation, it is prone to thermal decomposition and moisture attack leading to hydrated derivatives, making its synthesis cumbersome. Also, the Na–Fe–S–O quaternary system is rich with (anhydrous to hydrated) phase transitions. Herein, we demonstrate scalable aqueous-based spray drying synthesis of alluaudite Na2+2xFe2−x(SO4)3 sodium insertion material involving the formation of bloedite Na2Fe(SO4)2·4H2O as an intermediate phase. Moreover, a reversible phase transition from alluaudite to bloedite under controlled conditions of temperature and relative humidity is reported for the first time. Thermochemistry measurements revealed the enthalpies of formation (ΔH°f) of alluaudite and bloedite are exothermic. Hydrated bloedite (ΔH°f =  −117.16 ± 1.10 kJ/mol) was found to be significantly more energetically stable than anhydrous alluaudite (ΔH°f =  −11.76 ± 1.25 kJ/mol). The calorimetric data support the observed synthesis and transformation (hydration-dehydration) pathways. Spray drying route led to spherical morphology delivering capacity ~80 mAh/g. Spray drying can be extended for rapid economic synthesis of sulfate class of battery materials.

Funder

Science and Engineering Research Board

Department of Science and Technology, Ministry of Science and Technology

International Centre for Diffraction Data

Savannah River Operations Office, U.S. Department of Energy

Universität Ulm

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Electrochemistry,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3