Modeling solid-state reaction processes: application for the archaeometric study of potteries from Venus Fisica Temple in Pompeii (Italy)

Author:

Di Turo FrancescaORCID,De Vito Caterina,Coletti Fulvio,Doménech-Carbó Antonio

Abstract

AbstractThis research employs the voltammetry of immobilized microparticles (VIMP) methodology to analyze a collection of ceramic samples from the temple of Venus Fisica in the archaeological site of Pompeii. The primary objective is to discern their origins and manufacturing processes by the solid-state analysis of the electroactive properties of iron minerals, particularly hematite, extensively investigated for its electrochemical and catalytic characteristics. In our study, we propose a model to elucidate the electrochemical processes involved, building upon prior logistic and nucleation formulations. In this model, we consider the possibility of two superimposed pathways. This approach provides a nuanced understanding of composition changes and mineral crystallinity, factors that can induce significant variations in the voltammetric signal. Consequently, it becomes an effective means to discriminate between different provenances and manufacturing techniques of different potteries. The outcomes of this research contribute valuable insights into the intricate realm of ancient ceramic materials, casting light on their origins and production processes within the historical context of Pompeii.

Funder

Scuola Normale Superiore

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3