Impact of titanium precursors on formation and electrochemical properties of Li4Ti5O12 anode materials for lithium-ion batteries

Author:

Kang Chung-Yuan,Krajewski MarcinORCID,Lin Jeng-Yu

Abstract

AbstractThis work describes comparative study on the application of Li4Ti5O12 (LTO) as anode materials for lithium-ion batteries which were successfully prepared by sol-gel synthesis with the use of two titanium sources. One of them was anatase-type titanium dioxide (TiO2), whereas the second was tetrabutyl titanate (TBT). Both obtained LTO materials were very similar in terms of their crystallinity and purity. In turn, the sample synthetized with TBT source revealed better particle dispersibility, and its particles were slightly lower in size. These particular features resulted in higher Li+ diffusion coefficient and better kinetic of Li+ ions during charge transfer reactions for the LTO synthetized with TBT source. This reflected in specific capacitance values for both electrodes which equalled 150 mAh g−1, 120 mAh g−1, and 63 mAh g−1 for TBT-LTO and 120 mAh g−1, 80 mAh g−1, and 58 mAh g−1 for TiO2-LTO at C-rates of 1, 5, and 10 C, respectively.

Funder

Ministry of Science and Technology, Taiwan

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Electrochemistry,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3