Evolution of orbits about comets with arbitrary comae

Author:

Moretto MarkORCID,McMahon Jay

Abstract

AbstractSpacecraft and natural objects orbiting an active comet are perturbed by gas drag from the coma. These gases expand radially at about 0.5 km/s, much faster than orbital velocities that are on the order of meters per second. The coma has complex gas distributions and is difficult to model. Accelerations from gas drag can be on the same order of gravity and are currently poorly understood. Semi-analytical solutions for the evolution of the Keplerian orbital elements of a spacecraft orbiting a comet using simplified drag and coma models are derived using a Fourier series expansion in the argument of latitude. It is found that the mean element evolution is only dependent on the zeroth- and first-order terms of the Fourier series expansion. For an arbitrary, inverse-square, radial, perturbing force, there are no frozen orbits; however, the argument of pericenter has a stable equilibrium and an unstable equilibrium and the angular momentum vector of the orbit is constant. Furthermore, the radius of the orbit at two specific angles relative to the ascending node is preserved. The evolution of the orbit is governed by the argument of pericenter, resulting in orientations that raise and lower the radius of pericenter and implying safe and unsafe orbit orientations for spacecraft operations.

Funder

National Aeronautics and Space Administration

Publisher

Springer Science and Business Media LLC

Subject

Space and Planetary Science,Astronomy and Astrophysics,Applied Mathematics,Computational Mathematics,Mathematical Physics,Modelling and Simulation

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3