Abstract
AbstractThis paper compares the continuum evolution for density equation modelling and the Gaussian mixture model on the 2D phase space long-term density propagation problem in the context of high-altitude and high area-to-mass ratio satellite long-term propagation. The density evolution equation, a pure numerical and pointwise method for the density propagation, is formulated under the influence of solar radiation pressure and Earth’s oblateness using semi-analytical methods. Different from the density evolution equation and Monte Carlo techniques, for the Gaussian mixture model, the analytical calculation of the density is accessible from the first two statistical moments (i.e. the mean and the covariance matrix) corresponding to each sub-Gaussian distribution for an initial Gaussian density distribution. An insight is given into the phase space long-term density propagation problem subject to nonlinear dynamics. The efficiency and validity of the density propagation are demonstrated and compared between the density evolution equation and the Gaussian mixture model with respect to standard Monte Carlo techniques.
Funder
h2020 european research council
national natural science foundation of china
qinglan project of jiangsu province of china
university postgraduate programme
Publisher
Springer Science and Business Media LLC
Subject
Space and Planetary Science,Astronomy and Astrophysics,Applied Mathematics,Computational Mathematics,Mathematical Physics,Modeling and Simulation
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献