The Conley–Zehnder indices of the spatial Hill three-body problem

Author:

Aydin Cengiz

Abstract

AbstractWe explore the interaction between the Conley–Zehnder index and bifurcation points of symmetric planar as well as spatial periodic orbits in the spatial Hill three-body problem. We start with the fundamental families of planar periodic orbits which are those of direct (familyg) and retrograde periodic orbits (familyf). Since the spatial system is invariant under a symplectic involution, whose fixed point set corresponds to the planar problem, planar orbits have planar and spatial Floquet multipliers, and planar and spatial Conley–Zehnder indices. When the Floquet multipliers move through a root of unity, new families of periodic orbits bifurcate and the index jumps. For very low energies, the familiesgand farise dynamically from the rotating Kepler problem, and in a recent work (Aydin From Babylonian lunar observations to Floquet multipliers and Conley-Zehnder Indices) we determined analytically their indices. By their numerical continuations for higher energies, we determine the index of various families of planar and spatial periodic orbits bifurcating fromgandf. Since these families can bifurcate again and meet each other, this procedure can get complicated. This index leads to a grading on local Floer homology. Since the local Floer homology and its Euler characteristic stay invariant under bifurcation, the index provides important information about the interconnectedness of such families, which we illustrate in form of bifurcation graphs. Since the solutions of Hill’s system may serve as orbits for space mission design or astronomical observations, our results promote the interaction between Symplectic Geometry and practical problems.

Funder

University of Neuchâtel

Publisher

Springer Science and Business Media LLC

Subject

Space and Planetary Science,Astronomy and Astrophysics,Applied Mathematics,Computational Mathematics,Mathematical Physics,Modeling and Simulation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3