Abstract
AbstractOrbital resonances can be leveraged in the mission design phase to target planets at different energy levels. On the other side, precise models are needed to predict possible threatening returns of natural and artificial objects closely approaching a target planet. To this aim, we propose a semi-analytic extension of the b-plane resonance model to account for perturbing effects inside the planet’s sphere of influence. We compute the actual values of the perturbing coefficients by means of precise numerical simulations, whereas their expression stems from the properties of hyperbolic trajectories and asymptotic planetocentric velocity vectors. We apply the proposed b-plane model to design ballistic resonant flybys by solving a multilevel mixed-integer nonlinear optimization problem.
Funder
H2020 European Research Council
Publisher
Springer Science and Business Media LLC
Subject
Space and Planetary Science,Astronomy and Astrophysics,Applied Mathematics,Computational Mathematics,Mathematical Physics,Modeling and Simulation
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献