On doubly symmetric periodic orbits

Author:

Frauenfelder Urs,Moreno Agustin

Abstract

AbstractIn this article, for Hamiltonian systems with two degrees of freedom, we studydoubly symmetricperiodic orbits, i.e., those which are symmetric with respect to two (distinct) commuting antisymplectic involutions. These are ubiquitous in several problems of interest in mechanics. We show that, in dimension four, doubly symmetric periodic orbits cannot be negative hyperbolic. This has a number of consequences: (1) All covers of doubly symmetric orbits aregood, in the sense of Symplectic Field Theory (Eliashberg et al. Geom Funct Anal Special Volume Part II:560–673, 2000); (2) a non-degenerate doubly symmetric orbit is stable if and only if its CZ-index is odd; (3) a doubly symmetric orbit doesnotundergo period doubling bifurcation; and (4) there is always a stable orbit in any collection of doubly symmetric periodic orbits with negativeSFT-Euler characteristic(as coined in Frauenfelder et al. in Symplectic methods in the numerical search of orbits in real-life planetary systems. PreprintarXiv:2206.00627). The above results follow from: (5) A symmetric orbit is negative hyperbolic if and only its twoB-signs(introduced in Frauenfelder and Moreno 2021) differ.

Funder

National Science Foundation

Deutsche Forschungsgemeinschaft

Publisher

Springer Science and Business Media LLC

Subject

Space and Planetary Science,Astronomy and Astrophysics,Applied Mathematics,Computational Mathematics,Mathematical Physics,Modeling and Simulation

Reference24 articles.

1. Abraham, R., Marsden, J.: Foundations of Mechanics, 2nd edn. Addison-Wesley, New York (1978)

2. Birkhoff, G.: The restricted problem of three bodies. Rend. Circ. Matem. Palermo 39, 265–334 (1915)

3. Cieliebak, K., Frauenfelder, U., Schwingenheuer, M.: On Langmuir’s periodic orbit. Arch. Math. (Basel) 118(4), 413–425 (2022)

4. Cieliebak, K., Frauenfelder, U., Volkov, E.: A variational approach to frozen planet orbits in helium. Ann. Inst. H. Poincaré (to appear)

5. Cieliebak, K., Frauenfelder, U., Volkov, E.: Nondegeneracy and integral count of frozen planets in Helium. arXiv: 2209.12634

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On a theorem by Schlenk;Calculus of Variations and Partial Differential Equations;2024-05-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3