Affiliation:
1. 1Université de Poitiers
Abstract
AbstractOur aim in this paper is to study the long time behavior of a class of doubly nonlinear parabolic equations. In particular, we prove the existence of the global attractor which has, in one and two space dimensions, finite fractal dimension.
Reference28 articles.
1. H.W. Alt and S. Luckhaus: “Quasilinear elliptic-parabolic differential equations”, Math. Z., Vol. 183, (1983), pp. 311–341.
2. T. Arai: “On the existence of the solution for ∂ϕ(u′(t)) + ∂ψ(u(t)) ∋ f(t)”, J. Fac. Sci. Univ. Tokyo Sect. IA Math., Vol. 26, (1979), pp. 75–96.
3. A.V. Babin and M.I. Vishik: Attractors of evolution equations, North-Holland, Amsterdam, 1992.
4. A. Bamberger: “Etude d'une équation doublement non linéaire”, J. Funct. Anal., Vol. 24, (1977), pp. 148–155.
5. V. Barbu: Nonlinear semigroups and differential equations in Banach spaces, Noordhoff, Leiden, 1976.
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献