Analysis, Design, and Optimization of Robust Trajectories in Cislunar Environment for Limited-Capability Spacecraft

Author:

Giordano CarmineORCID,Topputo Francesco

Abstract

AbstractNowadays, the space exploration is going in the direction of exploiting small platforms to get high scientific return at significantly lower costs. However, miniaturized spacecraft pose different challenges both from the technological and mission analysis point of view. While the former is in constant evolution due to the manufacturers, the latter is an open point, since it is still based on a traditional approach, not able to cope with the new platforms’ peculiarities. In this work, a revised preliminary mission analysis approach, merging the nominal trajectory optimization with a complete navigation assessment, is formulated in a general form and three main blocks composing it are identified. Then, the integrated approach is specialized for a cislunar test case scenario, represented by the transfer trajectory from a low lunar orbit to an halo orbit of the CubeSat LUMIO, and each block is modeled with mathematical means. Eventually, optimal solutions, minimizing the total costs, are sought, showing the benefits of an integrated approach.

Funder

European Space Agency

Politecnico di Milano

Publisher

Springer Science and Business Media LLC

Subject

Space and Planetary Science,Aerospace Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3