1. Alfriend, K.T., Park, I.: When does the uncertainty become non-gaussian. In: Advanced Maui Optical and Space Surveillance Technologies Conference, pp. 46, (2016)
2. Bader, B.W., Kolda, T.G., et al.: Tensor toolbox for matlab, version 2.2, (2008)
3. Bates, D.M., Watts, D.G.: Relative curvature measures of nonlinearity. J. R. Stat. Soc. Ser. B (Methodological) 42(1), 1–16 (1980). https://doi.org/10.1111/j.2517-6161.1980.tb01094.x
4. Cain, M.K., Zhang, Z., Yuan, K.-H.: Univariate and multivariate skewness and kurtosis for measuring nonnormality: prevalence, influence and estimation. Behav. Res. Methods 49(5), 1716–1735 (2017). https://doi.org/10.3758/s13428-016-0814-1
5. Chow II, C.C.: Autonomous interplanetary constellation design. PhD thesis, University of Southern California (2012)