Image Processing Robustness Assessment of Small-Body Shapes

Author:

Buonagura CarmineORCID,Pugliatti Mattia,Topputo Francesco

Abstract

AbstractAsteroids and comets are triggering interest due to the richness of precious materials, their scientific value as well as for their potential hazardousness. Owing to their significant diversity, minor bodies do not exhibit uniform shapes: they can range from spherical to irregularly shaped objects with rocky, uneven, and cratered surface. Nowadays, space probes rely more and more on optical navigation techniques, due to the increasing demand for autonomy. When dealing with minor bodies, the diversified range of shapes can significantly affect the performance of these techniques. In order to enable deep space probes to confidently deal with uncertainties, the need for robust image processing methods arises. Commonly, few image processing methods are designed and tested with limited shapes to meet mission requirements. In this work, we depart from this paradigm by developing a new framework, which includes extensive testing of the image processing algorithms with various shapes. The shapes are not randomly analyzed, yet they are arranged in a hierarchical structure called hyper-cube. The cube allows for a better understanding of the methods performance and to infer the way they shift from one shape to the other. The novelty of this approach lies both in the cube representation, which allows a better understanding of the link between the image processing algorithms and shape of the object, but also in the extensive number of shapes that have been tested, which has never been done before. In this analysis, four methods are considered, namely: center of brightness, intensity weighted centroiding, correlation with Lambertian spheres, and least-squares-based ellipse fitting. Results from this test allow us correlating the methods performances to the bodies shape, to suggest the best performing method for each shape family, and to assess their robustness.

Funder

Stardust-R

Politecnico di Milano

Publisher

Springer Science and Business Media LLC

Subject

Space and Planetary Science,Aerospace Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Shape Entropy of Small Bodies;Mathematics;2023-02-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3