Trajectory Design for the ESA LISA Mission

Author:

Martens WaldemarORCID,Joffre Eric

Abstract

AbstractThe three Laser Interferometer Space Antenna (LISA) spacecraft are going to be placed in a triangular formation in an Earth-trailing or Earth-leading orbit. They will be launched together on a single rocket and transferred to that science orbit using Solar Electric Propulsion. Since the transfer Δv depends on the chosen science orbit, both transfer and science orbit have been optimised together. For a thrust level of 90 mN, an allocation of 1092 m/s per spacecraft is sufficient for an all-year launch in 2034. For every launch month a dedicated science orbit is designed with a corner angle variation of 60° ± 1.0° and an arm length rate of maximum 10 m/s. Moreover, a detailed navigation analysis of the science orbit insertion and the impact on insertion errors on the constellation stability has been conducted. The analysis shows that Range/Doppler measurements together with a series of correction manoeuvres at the beginning of the science orbit phase can reduce insertion dispersions to a level where corner angle variations remain at about 60° ± 1.1° at 99% C.L. However, the situation can become significantly worse if the self-gravity accelerations acting during the science orbit phase are not sufficiently characterised prior to science orbit insertion.

Publisher

Springer Science and Business Media LLC

Subject

Space and Planetary Science,Aerospace Engineering

Reference24 articles.

1. C. Danzmann et al, LISA - Laser Interferometry Space Antenna, a Proposal in Response to the ESA Call for L3 Mission Concepts, (2017)

2. K. Danzmann and the LISA Consortium, The Gravitational Universe, https://arxiv.org/abs/1305.5720, 2013

3. Martynov, D.V., et al.: Sensitivity of the Advanced LIGO detectors at the beginning of gravitational wave astronomy. Phys. Rev. D. 93(11), 112004 (2016). https://doi.org/10.1103/PhysRevD.93.112004

4. P. Bender et al, A Cornerstone Mission for the Observation of Gravitational Waves, System and Technology Study Report, ESA-SCI(2000) 11, (2000)

5. Gerberding, O., Sheard, B., Bykov, I., Kullmann, J., Esteban Delgado, J.J., Danzmann, K., Heinzel, G.: Phasemeter core for intersatellite laser heterodyne interferometry: modelling, simulations and experiments. Classical and Quantum Gravity. 30, 235029 (2013)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3