An Adaptive Analytic Continuation Method for Computing the Perturbed Two-Body Problem State Transition Matrix

Author:

Tasif Tahsinul HaqueORCID,Elgohary Tarek A.

Abstract

AbstractIn this work, the Taylor series based technique, Analytic Continuation is implemented to develop a method for the computation of the gravity and drag perturbed State Transition Matrix (STM) incorporating adaptive time steps and expansion order. Analytic Continuation has been developed for the two-body problem based on two scalar variables f and gp and their higher order time derivatives using Leibniz rule. The method has been proven to be very precise and efficient in trajectory propagation. The method is expanded to include the computation of the STM for the perturbed two-body problem. Leibniz product rule is used to compute the partials for the recursive formulas and an arbitrary order Taylor series is used to compute the STM. Four types of orbits, LEO, MEO, GTO and HEO, are presented and the simulations are run for 10 orbit periods. The accuracy of the STM is evaluated via RMS error for the unperturbed cases, symplectic check for the gravity perturbed cases and error propagation for the gravity and drag perturbed orbits. The results are compared against analytical and high order numerical solvers (ODE45, ODE113 and ODE87) in terms of accuracy. The results show that the method maintains double-precision accuracy for all test cases and 1-2 orders of magnitude improvement in linear prediction results compared to ODE87. The present approach is simple, adaptive and can readily be expanded to compute the full spherical harmonics gravity perturbations as well as the higher order state transition tensors.

Funder

University of Central Florida

Federal Aviation Administration

Publisher

Springer Science and Business Media LLC

Subject

Space and Planetary Science,Aerospace Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3