Unpacking the Quantifying and Qualifying Potential of Semi-Open Job Satisfaction Questions through Computer-Aided Sentiment Analysis

Author:

Wijngaards IndyORCID,Burger Martijn,van Exel JobORCID

Abstract

AbstractDespite their suitability for mitigating survey biases and their potential for enhancing information richness, open and semi-open job satisfaction questions are rarely used in surveys. This is mostly due to the high costs associated with manual coding and difficulties that arise when validating text measures. Recently, advances in computer-aided text analysis have enabled researchers to rely less on manual coding to construct text measures. Yet, little is known about the validity of text measures generated by computer-aided text analysis software and only a handful of studies have attempted to demonstrate their added value. In light of this gap, drawing on a sample of 395 employees, we showed that the responses to a semi-open job satisfaction question can reliably and conveniently be converted into a text measure using two types of computer-aided sentiment analysis: SentimentR, and Linguistic Inquiry and Word Count (LIWC) 2015. Furthermore, the substantial convergence between the LIWC2015 and, in particular, SentimentR measure with a closed question measure of job satisfaction and logical associations with closed question measures of constructs that fall within and outside job satisfaction’s nomological network, suggest that a semi-open question has adequate convergent and discriminant validity. Finally, we illustrated that the responses to our semi-open question can be used to fine-tune the computer-aided sentiment analysis dictionaries and unravel antecedents of job satisfaction.

Publisher

Springer Science and Business Media LLC

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3