Automated 3D burr detection in cast manufacturing using sparse convolutional neural networks

Author:

Mohammed AhmedORCID,Kvam Johannes,Onstein Ingrid FjordheimORCID,Bakken Marianne,Schulerud Helene

Abstract

AbstractFor automating deburring of cast parts, this paper proposes a general method for estimating burr height using 3D vision sensor that is robust to missing data in the scans and sensor noise. Specifically, we present a novel data-driven method that learns features that can be used to align clean CAD models from a workpiece database to the noisy and incomplete geometry of a RGBD scan. Using the learned features with Random sample consensus (RANSAC) for CAD to scan registration, learned features improve registration result as compared to traditional approaches by (translation error ($$\Delta $$ Δ 18.47 mm) and rotation error($$\Delta 43 ^\circ $$ Δ 43 )) and accuracy(35%) respectively. Furthermore, a 3D-vision based automatic burr detection and height estimation technique is presented. The estimated burr heights were verified and compared with measurements from a high resolution industrial CT scanning machine. Together with registration, our burr height estimation approach is able to estimate burr height similar to high resolution CT scans with Z-statistic value ($$z=0.279$$ z = 0.279 ).

Funder

Research Council of Norway

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Industrial and Manufacturing Engineering,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Tool path correction for robotic deburring using local non-rigid 3D registration;Robotics and Computer-Integrated Manufacturing;2024-10

2. Research on the Wear Suppress of Diamond Wheel Enabled by Hexagonal Boron Nitride;2024

3. Effectiveness of Quantum Computing in Image Processing for Burr Detection;18th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2023);2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3