A novel approach of tool condition monitoring in sustainable machining of Ni alloy with transfer learning models

Author:

Ross Nimel SwornaORCID,Sheeba Paul T.,Shibi C. Sherin,Gupta Munish KumarORCID,Korkmaz Mehmet Erdi,Sharma Vishal S

Abstract

AbstractCutting tool condition is crucial in metal cutting. In-process tool failures significantly influences the surface roughness, power consumption, and process endurance. Industries are interested in supervisory systems that anticipate the health of the tool. A methodology that utilizes the information to predict problems and to avoid failures must be embraced. In recent years, several machine learning-based predictive modelling strategies for estimating tool wear have been emerged. However, due to intricate tool wear mechanisms, doing so with limited datasets confronts difficulties under varying operating conditions. This article proposes the use of transfer learning technology to detect tool wear, especially flank wear under distinct cutting environments (dry, flood, MQL and cryogenic). In this study, the state of the cutting tool was determined using the pre-trained networks like AlexNet, VGG-16, ResNet, MobileNet, and Inception-V3. The best-performing network was recommended for tool condition monitoring, considering the effects of hyperparameters such as batch size, learning rate, solver, and train-test split ratio. In light of this, the recommended methodology may prove to be highly helpful for classifying and suggesting the suitable cutting conditions, especially under limited data situation. The transfer learning model with Inception-V3 is extremely useful for intelligent machining applications.

Funder

Narodowym Centrum Nauki

Polska Akademia Nauk

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Industrial and Manufacturing Engineering,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3