A rotary extrusion system with a rectangular-orifice nozzle: toward adaptive resolution in material extrusion additive manufacturing

Author:

Gharehpapagh BaharORCID,Dilberoglu Ugur M.ORCID,Yaman UlasORCID,Dolen MelikORCID

Abstract

AbstractMaterial extrusion additive manufacturing (MEAM) has revolutionized the production of complex designs while minimizing the amount of effort required due to its simple production pipeline. However, MEAM naturally comes with a well-known trade-off; higher build resolution often tends to enhance the product quality at the cost of a slower build rate. Nozzles, the standard tool for thermoplastic extrusion in MEAM, have evolved into a crucial component of the process for controlling the product’s build resolution. The purpose of this study is to investigate the details of a novel extrusion system that makes use of a rotating nozzle with an unconventional aperture, in contrast to its typical (i.e., circular-orifice) counterparts. The unique nozzle configuration that lacks axial symmetry allows for precise control over the effective dimension of the extrusion via rotational guiding. By positioning the oblong orifice at intermediate orientations, the presented approach seeks to provide continuously variable intralayer and interlayer resolutions for MEAM processes. This paper explores the distinctive characteristics of this new nozzle design as well as the potential uses of the novel extrusion system. The outcomes of the conducted tests demonstrate the proof-of-concept for creating variable bead width within the layers, in addition to adaptable layer heights throughout the 3D objects. Possible limitations of the new approach and future perspectives are discussed in detail.

Funder

Türkiye Bilimsel ve Teknolojik Araştırma Kurumu

Orta Doğu Teknik Üniversitesi

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Industrial and Manufacturing Engineering,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3