Incremental transfer learning for robot drilling state monitoring under multiple working conditions
Author:
Funder
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Publisher
Springer Science and Business Media LLC
Link
https://link.springer.com/content/pdf/10.1007/s10845-024-02432-0.pdf
Reference33 articles.
1. Abdul, Z. K., & Al-Talabani, A. K. (2023). Highly Accurate Gear Fault Diagnosis Based on Support Vector Machine. Journal of Vibration Engineering & Technologies, 11, 3565–3577. https://doi.org/10.1007/s42417-022-00768-6
2. Ahmad, Z., Prosvirin, A. E., Kim, J., & Kim, J.-M. (2020). Multistage Centrifugal Pump Fault Diagnosis by Selecting Fault Characteristic Modes of Vibration and Using Pearson Linear Discriminant Analysis. IEEE Access, 8, 223030–223040. https://doi.org/10.1109/ACCESS.2020.3044195. Conference Name: IEEE Access.
3. Al-Kindi, G. A., & Shirinzadeh, B. (2007). An evaluation of surface roughness parameters measurement using vision-based data. International Journal of Machine Tools and Manufacture, 47, 697–708. https://doi.org/10.1016/j.ijmachtools.2006.04.013
4. Chen, X., Yang, R., Xue, Y., Huang, M., Ferrero, R., & Wang, Z. (2023). Deep Transfer Learning for Bearing Fault Diagnosis: A Systematic Review Since 2016. IEEE Transactions on Instrumentation and Measurement, 72, 1–21. https://doi.org/10.1109/TIM.2023.3244237. Conference Name: IEEE Transactions on Instrumentation and Measurement.
5. Chen, Q., Zhang, C., Hu, T., Zhou, Y., Ni, H., & Wang, T. (2021). Online chatter detection in robotic machining based on adaptive variational mode decomposition. The International Journal of Advanced Manufacturing Technology, 117, 555–577. https://doi.org/10.1007/s00170-021-07769-x
Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. CNC linear axis condition-based monitoring: a statistics-based framework to establish a baseline dataset and case study;Journal of Intelligent Manufacturing;2024-07-23
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3