Funder
National Natural Science Foundation of China
Natural Science Foundation of Beijing Municipality
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence,Industrial and Manufacturing Engineering,Software
Reference41 articles.
1. Aivaliotis, P., Georgoulias, K., & Chryssolouris, G. (2019). The use of digital twin for predictive maintenance in manufacturing. International Journal of Computer Integrated Manufacturing, 32(11), 1067–1080.
2. Aragón, G., Puri, H., Grass, A., Chala, S., & Beecks, C. (2019). Incremental deep-learning for continuous load prediction in energy management systems. In 2019 IEEE Milan PowerTech (pp. 1–6). IEEE.
3. Bai, S., Kolter, J.Z., & Koltun, V. (2018). An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv preprint arXiv:1803.01271.
4. Blasch, E. P., Darema, F., Ravela, S., & Aved, A. J. (2022). Handbook of dynamic data driven applications systems (Vol. 1). Springer.
5. Booyse, W., Wilke, D. N., & Heyns, S. (2020). Deep digital twins for detection, diagnostics and prognostics. Mechanical Systems and Signal Processing, 140, 106612–110661225.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Iterative updating of digital twin for equipment: Progress, challenges, and trends;Advanced Engineering Informatics;2024-10
2. A Dynamic Evolution Method for Digital Twins Based on RDD-RNN;2023 International Conference on Communications, Computing, Cybersecurity, and Informatics (CCCI);2023-10-18