Transformation of a rolling mill aggregate to a cyber physical production system: from sensor retrofitting to machine learning

Author:

Ralph Benjamin JamesORCID,Sorger MarcelORCID,Hartl KarinORCID,Schwarz-Gsaxner AndreasORCID,Messner FlorianORCID,Stockinger MartinORCID

Abstract

AbstractThis paper describes the transformation of a rolling mill aggregate from a stand-alone solution to a fully integrated cyber physical production system. Within this process, already existing load cells were substituted and additional inductive and magnetic displacement sensors were applied. After calibration, those were fully integrated into a six-layer digitalization architecture at the Smart Forming Lab at the Chair of Metal Forming (Montanuniversitaet Leoben). Within this framework, two front end human machine interfaces were designed, where the first one serves as a condition monitoring system during the rolling process. The second user interface visualizes the result of a resilient machine learning algorithm, which was designed using Python and is not just able to predict and adapt the resulting rolling schedule of a defined metal sheet, but also to learn from additional rolling mill schedules carried out. This algorithm was created on the basis of a black box approach, using data from more than 1900 milling steps with varying roll gap height, sheet width and friction conditions. As a result, the developed program is able to interpolate and extrapolate between these parameters as well as different initial sheet thicknesses, serving as a digital twin for data-based recommendations on schedule changes between different rolling process steps. Furthermore, via the second user interface, it is possible to visualize the influence of this parameters on the result of the milling process. As the whole layer system runs on an internal server at the university, students and other interested parties are able to access the visualization and can therefore use the environment to deepen their knowledge within the characteristics and influence of the sheet metal rolling process as well as data science and especially fundamentals of machine learning. This algorithm also serves as a basis for further integration of materials science based data for the prediction of the influence of different materials on the rolling result. To do so, the rolled specimens were also analyzed regarding the influence of the plastic strain path on their mechanical properties, including anisotropy and materials’ strength.

Funder

Montanuniversität Leoben

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Industrial and Manufacturing Engineering,Software

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3