Semantic part segmentation of spatial features via geometric deep learning for automated control cabinet assembly

Author:

Bründl PatrickORCID,Scheffler BenediktORCID,Stoidner MichaORCID,Nguyen HuongORCID,Baechler Andreas,Abrass Ahmad,Franke JörgORCID

Abstract

AbstractIndustries with batch size one manufacturing philosophies for highly customized products have been largely limited in manufacturing automation. The control cabinet industry is particularly affected by this problem during the mounting and wiring of components due to high variety, variance, and complexity of components as well as handling tasks. Rapid advances in the field of machine learning are opening new possibilities for automating previously manual processes. This paper proposes a concept for identifying geometric features of electrical components that starts from STEP files and transforms them into modular metrics relevant to build a digital twin and (automatic)manufacturing. The architecture is tested on a self-aggregated and processed dataset of control cabinet components and achieves an average dice score of 65.27% and an intersection over union of 51.41% across all segmentation classes. In addition to semantic part segmentation of the components, the cluster, volume and surface centroids, the normal vectors and the size of each feature are computed. The paper evaluates the suitability of cutting-edge techniques such as diffusion as well as established deep learning architectures. The result is a hybrid end-to-end inference pipeline suitable for general spatial assembly processes.

Funder

Rittal GmbH & Co. KG

Friedrich-Alexander-Universität Erlangen-Nürnberg

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Industrial and Manufacturing Engineering,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Traceability in Engineer-to-Order Manufacturing SMEs;2024 32nd Mediterranean Conference on Control and Automation (MED);2024-06-11

2. Towards a Reconfigurable Manufacturing System for Control Cabinet Manufacturing: A Systematic Literature Review and Research Agenda;2024 32nd Mediterranean Conference on Control and Automation (MED);2024-06-11

3. A Dataset of Electrical Components for Mesh Segmentation and Computational Geometry Research;Scientific Data;2024-03-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3