Accurate and energy efficient ad-hoc neural network for wafer map classification

Author:

Pinzari Ana,Baumela Thomas,Andrade Liliana,Martin Maxime,Coppola Marcello,Pétrot FrédéricORCID

Abstract

AbstractYield is key to profitability in semiconductor manufacturing and controlling the fabrication process is therefore a key duty for engineers in silicon foundries. Analyzing the distribution of the defective dies on a wafer is a necessary step to identify process shifts, and a major step in this analysis takes the form of a classification of these distributions on wafer bitmaps called wafer maps. Current approaches use large to huge state-of-the-art neural networks to perform this classification. We claim that given the task at hand, the use of much smaller, purpose defined neural networks is possible without much accuracy loss, while requiring two orders of magnitude less power than the current solutions. Our work uses actual foundry data from STMicroelectronics 28 nm fabrication facilities that it aims at classifying in 58 categories. We performed experiments using different low power boards for which we report accuracy, power consumption and power efficiency. As a result, we show that to classify 224$$\times $$ × 224 wafer maps at foundry-throughput with an accuracy above 97% using a bit more than 1 W, is feasible.

Funder

Key Digital Technologies Joint Undertaking

Agence Nationale de la Recherche

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3