Development of a surrogate model for high-fidelity laser powder-bed fusion using tensor train and gaussian process regression

Author:

Kizhakkinan UmeshORCID,Duong Pham Luu Trung,Laskowski Robert,Vastola Guglielmo,Rosen David W.,Raghavan Nagarajan

Abstract

AbstractA multi-physics high-fidelity computational model is required to study the melting and grain growth phenomena in a laser powder-bed fusion (LPBF) additive manufacturing process. The major challenge with the high-fidelity model is long computational time, which makes it unsuited for any feasible process parameter optimization study in a high dimensional process design space. To address this challenge, surrogate models are a good option to replace the high-fidelity model, resulting in a significant shortening of the computational time at the expense of an acceptable drop in accuracy. In this study, a tensor train (TT) and Gaussian process regression (GPR) based methodology is proposed to develop a surrogate of the high-fidelity powder-scale model. An in-house developed powder-scale model is used to generate the training data by simulating a microscale model of the powder-bed for different values of laser power. The trained TT-GPR model can predict the thermal history of the powder-bed and melt pool geometry for a specified value of laser power, while the computation time required for prediction of any set of process conditions is less than one second. Here we can achieve an approximate computational speedup of 10$$^4$$ 4 with the surrogate model. We provide evidence to claim that the proposed surrogate model provides high computational efficiency without compromising accuracy.

Funder

Agency for Science, Technology and Research

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Industrial and Manufacturing Engineering,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3