1. Ben-David, S., Blitzer, J., Crammer, K., Kulesza, A., Pereira, F., & Vaughan, J. W. (2010). A theory of learning from different domains. Machine Learning, 79(1), 151–175. https://doi.org/10.1007/s10994-009-5152-4
2. Cai, T., Gao, R., Lee, J., & Lei, Q. (2021). A theory of label propagation for subpopulation shift. In International Conference on Machine Learning, PMLR (Vol. 139, pp. 1170–1182).
3. Chen, Q., Liu, Y., Wang, Z., Wassell, I., & Chetty, K. (2018). Re-weighted adversarial adaptation network for unsupervised domain adaptation. In: IEEE Conference on Computer Vision and Pattern Recognition (pp. 7976–7985). https://doi.org/10.1109/CVPR.2018.00832
4. Chen, X., Zhang, B., & Gao, D. (2021). Bearing fault diagnosis base on multi-scale CNN and LSTM model. Journal of Intelligent Manufacturing, 32(4), 971–987. https://doi.org/10.1007/s10845-020-01600-2
5. Finn, C., Abbeel, P., & Levine, S. (2017). Model-agnostic meta-learning for fast adaptation of deep networks. In International Conference on Machine Learning, PMLR, (Vol. 70, pp. 1126–1135).