Abstract
AbstractMany manufacturing systems need more than one type of resource to co-work with. Commonly studied flexible job shop scheduling problems merely consider the main resource such as machines and ignore the impact of other types of resource. As a result, scheduling solutions may not put into practice. This paper therefore studies the dual resource constrained flexible job shop scheduling problem when loading and unloading time (DRFJSP-LU) of the fixtures is considered. It formulates a multi-objective mathematical model to jointly minimize the makespan and the total setup time. Considering the influence of resource requirement similarity among different operations, we propose a similarity-based scheduling algorithm for setup-time reduction (SSA4STR) and then an improved non-dominated sorting genetic algorithm II (NSGA-II) to optimize the DRFJSP-LU. Experimental results show that the SSA4STR can effectively reduce the loading and unloading time of fixtures while ensuring a level of makespan. The experiments also verify that the scheduling solution with multiple resources has a greater guiding effect on production than the scheduling result with a single resource.
Funder
the National Natural Science Foundation of China
University of Kent
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence,Industrial and Manufacturing Engineering,Software
Cited by
44 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献