Multicriteria task classification in human-robot collaborative assembly through fuzzy inference

Author:

Alessio Alessandro,Aliev KhurshidORCID,Antonelli Dario

Abstract

AbstractThe advent of new technologies and their implementation in manufacturing is accelerating the progress of Industry 4.0 (I4.0). Among the enabling technologies of I4.0, collaborative robots (cobots) push factory reconfiguration and prompt for worker empowerment by exploiting the respective assets of both humans and robots. Indeed, human has superior dexterity, flexibility, problem-solving ability. Robot excels in strength, endurance, accuracy and is expendable for risky activities. Therefore, task assignment problem in a production line with coexisting humans and robots cannot limit to the workload balancing among workers but should make the most of everyone respective abilities. The outcomes should not be only an increased productivity, but also improved production quality, human safety and well-being. Task assignment strategy should rely on a comprehensive assessment of the tasks from the viewpoint of suitability to humans or robots. As there are several conflicting evaluation criteria, often qualitative, the study defines the set of criteria, their metrics and proposes a method for task classification relying on Fuzzy Inference System to map each task onto a set of collaboration classes. The outcome of the study is the formal description of a set of evaluation criteria with their metrics. Another outcome is a Fuzzy Classification procedure that support production managers to properly consider all the criteria in the assignment of the tasks. The proposed methodology was tested on a case study derived from a manual manufacturing process to demonstrate its application during the process planning.

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Industrial and Manufacturing Engineering,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3