Stability modeling for chatter avoidance in self-aware machining: an application of physics-guided machine learning

Author:

Greis Noel P.ORCID,Nogueira Monica L.ORCID,Bhattacharya SambitORCID,Spooner Catherine,Schmitz TonyORCID

Abstract

AbstractPhysics-guided machine learning (PGML) offers a new approach to stability modeling during machining that leverages experimental data generated during the machining process while incorporating decades of theoretical process modeling efforts. This approach addresses specific limitations of machine learning models and physics-based models individually. Data-driven machine learning models are typically black box models that do not provide deep insight into the underlying physics and do not reflect physical constraints for the modeled system, sometimes yielding solutions that violate physical laws or operational constraints. In addition, acquiring the large amounts of manufacturing data needed for machine learning modeling can be costly. On the other hand, many physical processes are not completely understood by domain experts and have a high degree of uncertainty. Physics-based models must make simplifying assumptions that can compromise prediction accuracy. This research explores whether data generated by an uncertain physics-based milling stability model that is used to train a physics-guided machine learning stability model, and then updated with measured data, domain knowledge, and theory-based knowledge provides a useful approximation to the unknown true stability model for a specific set of factory operating conditions. Four novel strategies for updating the machine learning model with experimental data are explored. These updating strategies differ in their assumptions about and implementation of the type of physics-based knowledge included in the PGML model. Using a simulation experiment, these strategies achieve useful approximations of the underlying true stability model while reducing the number of experimental measurements required for model update.

Funder

Research Opportunities Initiative, University of North Carolina

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Industrial and Manufacturing Engineering,Software

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3