Relating wear stages in sheet metal forming based on short- and long-term force signal variations

Author:

Niemietz PhilippORCID,Kornely Mia J. K.ORCID,Trauth DanielORCID,Bergs ThomasORCID

Abstract

AbstractMonitoring systems in sheet metal forming cannot rely on direct measurements of the physical condition of interest because the space between the die component and the material is inaccessible. Therefore, in order to gain further insight into the forming or stamping process, sensors must be used to detect auxiliary quantities such as acoustic emission and force that relate to the physical quantities of interest. While it is known that changes in force data are related to physical parameters of the process material, lubricant used, and geometry, the changes in data over large stroke series and their relationship to wear are the subject of this paper. Previously, force data from different wear conditions (artificially introduced into the system and not occurring in an industry-like environment) were used as input for clustering and classifying high and low wear force data. This paper contributes to fill the current research gap by isolating structural properties of data as indicators of wear growth to quantify the wear evolution during ongoing production in industry-like scenarios. The selected methods represent either established methods in sheet metal forming force data analysis, dimensionality reduction for local structure separation or generic feature extraction. The study is conducted on a set of four experiments with each containing about 3000 strokes.

Funder

deutsche forschungsgemeinschaft

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Industrial and Manufacturing Engineering,Software

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3