Energy-efficient tool path generation and expansion optimisation for five-axis flank milling with meta-reinforcement learning

Author:

Lu Fengyi,Zhou Guanghui,Zhang Chao,Liu YangORCID,Chang Fengtian,Lu Qi,Xiao Zhongdong

Abstract

AbstractFive-axis flank milling is prevalent in complex surfaces manufacturing, and it typically consumes high electricity energy. To save energy and improve energy efficiency, this paper proposes a tool path optimisation of five-axis flank milling by meta-reinforcement learning. Firstly, considering flank milling features, a feed angle is defined that guides tool spatial motion and identifies an ideal principal path. Then, machining energy consumption and time are modelled by tool path variables, i.e., feed angle, cutting strip width and path length. Secondly, an energy-efficient tool path dynamic optimisation model is constructed, which is then described by multiple Markov Decision Processes (MDPs). Thirdly, meta-learning integrating with the Soft Actor-Critic (MSAC) framework is utilised to address the MDPs. In an MDP with one principal path randomly generated by a feed angle, cutting strip width is dynamically optimised under a maximum scallop height limit to realise energy-efficient multi-expansions. By quick traversal of MDPs with various feed angles, MSAC enables an energy-efficient path generation and expansion integrated scheme. Experiments show that, regarding machining energy consumption and time, the proposed method achieves a reduction of 69.96% and 68.44% over the end milling with an iso-scallop height, and of 41.50% and 39.80% over the flank milling with an iso-scallop height, with a minimum amount of machining carbon emission, which highlights its contribution to the arena of energy-oriented and sustainable intelligent manufacturing.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Young Talent Fund of the Shaanxi University Association for Science and Technology

Linköping University

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3