A universal predictor-based machine learning model for optimal process maps in laser powder bed fusion process
Author:
Funder
State of Texas Appropriation
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence,Industrial and Manufacturing Engineering,Software
Link
https://link.springer.com/content/pdf/10.1007/s10845-022-02004-0.pdf
Reference72 articles.
1. Aoyagi, K., Wang, H., Sudo, H., & Chiba, A. (2019). Simple method to construct process maps for additive manufacturing using a support vector machine. Additive Manufacturing, 27(March), 353–362. https://doi.org/10.1016/j.addma.2019.03.013
2. Appleyard, D. (2015). Powering up on powder technology. Metal Powder Report, 70(6), 285–289. https://doi.org/10.1016/j.mprp.2015.08.075
3. Arlot, S., & Celisse, A. (2010). A survey of cross-validation procedures for model selection. Statistics Surveys, 4, 40–79. https://doi.org/10.1214/09-SS054
4. Awad Mariette, K. R. (2015). Support vector regression. In Efficient learning machines (pp. 67–80). https://doi.org/10.1007/978-1-4302-5990-9_.
5. Balbaa, M., Mekhiel, S., Elbestawi, M., & McIsaac, J. (2020). On selective laser melting of Inconel 718: Densification, surface roughness, and residual stresses. Materials and Design, 193, 108818. https://doi.org/10.1016/j.matdes.2020.108818
Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Comprehensive review: Advancements in modeling geometrical and mechanical characteristics of laser powder bed fusion process;Optics & Laser Technology;2025-01
2. Predicting the porosity of as-built additive manufactured samples based on machine learning method for small datasets;Optics & Laser Technology;2024-10
3. Additive manufacturing of FeCrAl alloys for nuclear applications - A focused review;Nuclear Materials and Energy;2024-09
4. Predictive modelling of laser powder bed fusion of Fe-based nanocrystalline alloys based on experimental data using multiple linear regression analysis;Heliyon;2024-08
5. Big data, machine learning, and digital twin assisted additive manufacturing: A review;Materials & Design;2024-08
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3