A computational method for detecting aspect ratio and problematic features in additive manufacturing

Author:

Ge Ruihuan,Flynn JosephORCID

Abstract

AbstractIn metal additive manufacturing, geometries with high aspect ratio (AR) features are often associated with defects caused by thermal stresses and other related build failures. Ideally, excessively high AR features would be detected and removed in the design phase to avoid unwanted failure during manufacture. However, AR is scale and orientation independent and identifying features across all scales and orientations is exceptionally challenging. Furthermore, not all high AR features are as easy to recognise as thin walls and fine needles. There is therefore a pressing need for further development in the field of problematic features detection for additive manufacturing processes. In this work, a dimensionless ratio (D1/D2) based on two distance metrics that are extracted from triangulated mesh geometries is proposed. Based on this method, geometries with different features (e.g. thin wall, helices and polyhedra) were generated and evaluated to produce metrics that are similar to AR. The prediction results are compared with known theoretical AR values of typical geometries.By combining this metric with mesh segmentation, this method was further extended to analyse the geometry with complex features. The proposed method provides a powerful, general and promising way to automatically detect high AR features and tackle the relevant defect issues prior to manufacture.

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Industrial and Manufacturing Engineering,Software

Reference54 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3