Unsupervised rotating machinery fault diagnosis method based on integrated SAE–DBN and a binary processor
Author:
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence,Industrial and Manufacturing Engineering,Software
Link
http://link.springer.com/content/pdf/10.1007/s10845-020-01543-8.pdf
Reference42 articles.
1. Ben Ali, J., Saidi, L., Harrath, S., Bechhoefer, E., & Benbouzid, M. (2018). Online automatic diagnosis of wind turbine bearings progressive degradations under real experimental conditions based on unsupervised machine learning. Applied Acoustics, 132, 167–181.
2. Cao, Y., Ying, Y., Li, J., Li, S., & Guo, J. (2016). Study on rolling bearing fault diagnosis approach based on improved generalized fractal box-counting dimension and adaptive gray relation algorithm. Advances in Mechanical Engineering, 8(10), 168781401667558.
3. Chen, Z., & Li, W. (2017). Multisensor feature fusion for bearing fault diagnosis using sparse autoencoder and deep belief network. IEEE Transactions on Instrumentation and Measurement, 66(7), 1693–1702.
4. Cipollini, F., Oneto, L., Coraddu, A., & Savio, S. (2019). Unsupervised deep learning for induction motor bearings monitoring. Data-Enabled Discovery and Applications, 3(1), 1.
5. Dong, S., Zhang, Z., Wen, G., Dong, S., Zhang, Z., & Wen, G. (2017). Design and application of unsupervised convolutional neural networks integrated with deep belief networks for mechanical fault diagnosis. In 2017 Prognostics and system health management conference (PHM-Harbin) (pp. 1–7), Harbin, China, 2017.
Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Rotating machinery fault diagnosis based on one-dimensional convolutional neural network and modified multi-scale graph convolutional network under limited labeled data;Engineering Applications of Artificial Intelligence;2024-11
2. Parallel quantized dual-level fully connected classifier for bearing fault diagnosis;Engineering Applications of Artificial Intelligence;2024-10
3. A global and joint knowledge distillation method with gradient-modulated dynamic parameter adaption for EMU bogie bearing fault diagnosis;Measurement;2024-08
4. A coarse and fine-grained deep multi view subspace clustering method for unsupervised fault diagnosis of rolling bearings;Measurement Science and Technology;2024-07-22
5. A fault diagnosis method for nuclear power plants rotating machinery based on deep learning under imbalanced samples;Annals of Nuclear Energy;2024-05
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3