Abstract
AbstractDigitalisation trends of Industry 4.0 and Internet of Things led to an unprecedented growth of manufacturing data. This opens new horizons for data-driven methods, such as Machine Learning (ML), in monitoring of manufacturing processes. In this work, we propose ML pipelines for quality monitoring in Resistance Spot Welding. Previous approaches mostly focused on estimating quality of welding based on data collected from laboratory or experimental settings. Then, they mostly treated welding operations as independent events while welding is a continuous process with a systematic dynamics and production cycles caused by maintenance. Besides, model interpretation based on engineering know-how, which is an important and common practice in manufacturing industry, has mostly been ignored. In this work, we address these three issues by developing a novel feature-engineering based ML approach. Our method was developed on top of real production data. It allows to analyse sequences of welding instances collected from running manufacturing lines. By capturing dependencies across sequences of welding instances, our method allows to predict quality of upcoming welding operations before they happen. Furthermore, in our work we strive to combine the view of engineering and data science by discussing characteristics of welding data that have been little discussed in the literature, by designing sophisticated feature engineering strategies with support of domain knowledge, and by interpreting the results of ML analysis intensively to provide insights for engineering. We developed 12 ML pipelines in two dimensions: settings of feature engineering and ML methods, where we considered 4 feature settings and 3 ML methods (linear regression, multi-layer perception and support vector regression). We extensively evaluated our ML pipelines on data from two running industrial production lines of 27 welding machines with promising results.
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence,Industrial and Manufacturing Engineering,Software
Reference89 articles.
1. Afshari, D., Sedighi, M., Karimi, M. R., & Barsoum, Z. (2014). Prediction of the nugget size in resistance spot welding with a combination of a finite-element analysis and an artificial neural network. Materiali in Tehnologije, 48(1), 33–38.
2. Alpaydin, E. (2009). Introduction to Machine Learning. Massachusetts: MIT Press.
3. Amiri, N., Farrahi, G., Kashyzadeh, K. R., & Chizari, M. (2020). Applications of ultrasonic testing and machine learning methods to predict the static and fatigue behavior of spot-welded joints. Journal of Manufacturing Processes, 52, 26–34.
4. Bartschat, A., Reischl, M., & Mikut, R. (2019). Data mining tools. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 9(4), e1309.
5. Bengio, Y., Courville, A., & Vincent, P. (2013). Representation learning: a review and new perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(8), 1798–1828.
Cited by
56 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献