Explainable artificial intelligence and multi-stage transfer learning for injection molding quality prediction
Author:
Funder
Wisconsin Alumni Research Foundation
Ajou University
Mead Witter Foundation
University of Wisconsin-Madison
Publisher
Springer Science and Business Media LLC
Link
https://link.springer.com/content/pdf/10.1007/s10845-024-02436-w.pdf
Reference45 articles.
1. Aljundi, R., Babiloni, F., Elhoseiny, M., Rohrbach, M., & Tuytelaars, T. (2018). Memory aware synapses: Learning what (not) to forget. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 11207 LNCS, 144–161. https://doi.org/10.1007/978-3-030-01219-9_9.
2. Annicchiarico, D., & Alcock, J. R. (2014). Review of factors that affect shrinkage of molded part in injection molding. Materials and Manufacturing Processes, 29(6), 662–682. https://doi.org/10.1080/10426914.2014.880467.
3. Barredo Arrieta, A., Díaz-Rodríguez, N., Del Ser, J., Bennetot, A., Tabik, S., Barbado, A., Garcia, S., Gil-Lopez, S., Molina, D., Benjamins, R., Chatila, R., & Herrera, F. (2020). Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Information Fusion, 58, 82–115. https://doi.org/10.1016/J.INFFUS.2019.12.012.
4. Bensingh, R. J., Machavaram, R., Boopathy, S. R., & Jebaraj, C. (2019). Injection molding process optimization of a bi-aspheric lens using hybrid artificial neural networks (ANNs) and particle swarm optimization (PSO). Measurement, 134, 359–374. https://doi.org/10.1016/J.MEASUREMENT.2018.10.066.
5. Bottou, L. (2012). Stochastic Gradient Descent Tricks. In G. B. and M. K.-R. Montavon Grégoire and Orr (Ed.), Neural Networks: Tricks of the Trade: Second Edition (pp. 421–436). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-35289-8_25.
Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Exploring the Potentials of Artificial Intelligence in Managing Project Deliverables and Risk in Construction Projects: A Bibliometric Analysis;Lecture Notes in Mechanical Engineering;2024
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3