A novel tracking system for the iron foundry field based on deep convolutional neural networks

Author:

Beck Michael,Layh Michael,Nebauer Markus,Pinzer Bernd R.ORCID

Abstract

AbstractIn modern manufacturing the ability of retracing produced components is crucial for quality management and process optimization. Tracking is essential, especially for analyzing the influence of the production parameters on the final quality of the castings. In the iron foundry industry, common marking methods, such as a datamatrix code, cannot be used due to harsh environmental conditions and the rough surface of the cast parts. This work presents a new coding and reading system that guarantees unique marking in the casting process.The coding is built up over several beveled pins and is read out using an optical 2D handheld scanner. With a deep convolutional neural network approach of object detection and classification, a stable image processing algorithm is presented. With a first prototype a reading accuracy of 99.86% for each pin was achieved with an average scanning time of 0.43 s. The presented code is compatible with existing foundry processes, while the handheld scanner is intuitive and reliable. This allows immediate benefits for process optimization.

Funder

European Regional Development Fund

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Industrial and Manufacturing Engineering,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3