Comparison of algorithms for error prediction in manufacturing with automl and a cost-based metric

Author:

Gerling AlexanderORCID,Ziekow Holger,Hess Andreas,Schreier Ulf,Seiffer Christian,Abdeslam Djaffar Ould

Abstract

AbstractIn order to manufacture products at low cost, machine learning (ML) is increasingly used in production, especially in high wage countries. Therefore, we introduce our PREFERML AutoML system, which is adapted to the production environment. The system is designed to predict production errors and to help identifying the root cause. It is particularly important to produce results for further investigations that can also be used by quality engineers. Quality engineers are not data science experts and are usually overwhelmed with the settings of an algorithm. Because of this, our system takes over this task and delivers a fully optimized ML model as a result. In this paper, we give a brief overview of what results can be achieved with a state-of-the-art classifier. Moreover, we present the results with optimized tree-based algorithms based on RandomSearchCV and HyperOpt hyperparameter tuning. The algorithms are optimized based on multiple metrics, which we will introduce in the following sections. Based on a cost-oriented metric we can show an improvement for companies to predict the outcome of later product tests. Further, we compare the results from the mentioned optimization approaches and evaluate the needed time for them.

Funder

Bundesministerium für Bildung und Forschung

Hochschule Furtwangen

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Industrial and Manufacturing Engineering,Software

Reference54 articles.

1. Alcalá-Fdez, J., Fernández, A., Luengo, J., Derrac, J., García, S., Sánchez, L., & Herrera, F. (2011). Keel data-mining software tool: data set repository, integration of algorithms and experimental analysis framework. Journal of Multiple-Valued Logic and Soft Computing 17.

2. Banzhaf, W., Nordin, P., Keller, R. E., & Francone, F. D. (1998) Genetic programming: An introduction on the automatic evolution of computer programs and its applications.

3. Bergstra, J. & Bengio, Y. (2012) Random search for hyper-parameter optimization. Journal of Machine Learning Research, 81–305.

4. Boughorbel, S., Fethi, J., Mohammed, E.-A. (2020). Optimal classifier for imbalanced data using matthews correlation coefficient metric. PLOS ONE. Public Library of Science. Retrieved February 12, 2020 from https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0177678

5. Caggiano, A., Zhang, J., Alfieri, V., Caiazzo, F., Gao, R., & Teti, R. (2019). Machine learning-based image processing for on-line defect recognition in additive manufacturing. CIRP Annals, 68(1), 451–454. https://doi.org/10.1016/j.cirp.2019.03.021

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3