Single system for online monitoring and inspection of automated fiber placement with object segmentation by artificial neural networks

Author:

Brysch MarcoORCID,Bahar MohammadORCID,Hohensee Hans ChristophORCID,Sinapius MichaelORCID

Abstract

AbstractThe reduction of material defects in the automated fiber placement process is one of the significant factors for manufacturing large and complex components more efficiently in the future. However, the monitoring of complex manufacturing processes usually requires complex sensor and computer systems that are often quite sensitive to disturbances and errors. New techniques such as image segmentation with neural networks provide a new approach to this problem and have the potential to solve complex processes faster and more robustly. In this study, a system is presented that performs monitoring, inspection and measurement tasks simultaneously in automated fiber placement processes. The system is based on the SiamMask network which is used for the automatic image processing. The artificial neural network is trained to recognize individual carbon fiber tapes and segment them for additional analysis. For the creation of the testing- and training data, an analytical approach is presented. The post-processing of the object segmentation, which is the primary output of the SiamMask network and the identification of individual tapes, provides accurate measurements which are demonstrated by an example. We show that image segmentation with modern approaches like SiamMask offers great potential to handle highly complex engineering tasks in a faster and more intelligent manner in comparison to conventional methods.

Funder

Deutsche Forschungsgemeinschaft DFG

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Industrial and Manufacturing Engineering,Software

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3