Switching strategy-based hybrid evolutionary algorithms for job shop scheduling problems

Author:

Mahmud ShahedORCID,Chakrabortty Ripon K.,Abbasi Alireza,Ryan Michael J.

Abstract

AbstractSince production efficiency and costs are directly affected by the ways in which jobs are scheduled, scholars have advanced a number of meta-heuristic algorithms to solve the job shop scheduling problem (JSSP). Although this JSSP is widely accepted as a computationally intractable NP-hard problem in combinatorial optimization, its solution is essential in manufacturing. This study proposes performance-driven meta-heuristic switching approaches that utilize the capabilities of multi-operator differential evolution (MODE) and particle swarm optimization (PSO) in a single algorithmic framework. The performance-driven switching mechanism is introduced to switch the population from an under-performing algorithm to other possibilities. A mixed selection strategy is employed to ensure the diversity and quality of the initial population, whereas a diversity check mechanism maintains population diversity over the generations. Moreover, a Tabu search (TS) inspired local search technique is implemented to enhance the proposed algorithm’s exploitation capability, avoiding being trapped in the local optima. Finally, this study presents two mixed population structure-based hybrid evolutionary algorithms (HEAs), such as a predictive sequence HEA (sHEA) and a random sequence HEA (rHEA), and one bi-population inspired HEA, called bHEA. The comparative impacts of these varied population structure-based approaches are assessed by solving 5 categories of the standard JSSP instances (i.e., FT, LA, ORB, ABZ and TA). The performance of these hybridized approaches (i.e., sHEA, rHEA and bHEA) is compared and contrasted with its constituent algorithms (MODE, PSO and TS) to validate the hybridization’s effectiveness. The statistical analysis shows that sHEA ranked first with mean value 1.84 compared to rHEA (1.96) and bHEA (2.21). Moreover, the proposed sHEA is compared with 26 existing algorithms and ranked first with a mean value 5.09 compared to the near-best algorithms. Thus, the simulation results and statistical analysis prove the supremacy of the sHEA.

Funder

University of New South Wales

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Industrial and Manufacturing Engineering,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3