Abstract
AbstractRobotic vision plays a key role for perceiving the environment in grasping applications. However, the conventional framed-based robotic vision, suffering from motion blur and low sampling rate, may not meet the automation needs of evolving industrial requirements. This paper, for the first time, proposes an event-based robotic grasping framework for multiple known and unknown objects in a cluttered scene. With advantages of microsecond-level sampling rate and no motion blur of event camera, the model-based and model-free approaches are developed for known and unknown objects’ grasping respectively. The event-based multi-view approach is used to localize the objects in the scene in the model-based approach, and then point cloud processing is utilized to cluster and register the objects. The proposed model-free approach, on the other hand, utilizes the developed event-based object segmentation, visual servoing and grasp planning to localize, align to, and grasp the targeting object. Using a UR10 robot with an eye-in-hand neuromorphic camera and a Barrett hand gripper, the proposed approaches are experimentally validated with objects of different sizes. Furthermore, it demonstrates robustness and a significant advantage over grasping with a traditional frame-based camera in low-light conditions.
Funder
khalifa university of science, technology and research
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence,Industrial and Manufacturing Engineering,Software
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献