Abstract
AbstractDue to the high cost of specially customised presses and dies and the advance of machine learning technology, there is some emerging research attempting free-form sheet metal stamping processes which use several common tools to produce products of various shapes. However, tool path planning strategies for the free forming process, such as reinforcement learning technique, derived from previous path planning experience are not generalisable for an arbitrary new sheet metal workpiece. Thus, in this paper, a generalisable tool path planning strategy is proposed for the first time to realise the tool path prediction for an arbitrary sheet metal part in 2-D space with no metal forming knowledge in prior, through deep reinforcement (implemented with 2 heuristics) and supervised learning technologies. Conferred by deep learning, the tool path planning process is corroborated to have self-learning characteristics. This method has been instantiated and verified by a successful application to a case study, of which the workpiece shape deformed by the predicted tool path has been compared with its target shape. The proposed method significantly improves the generalisation of tool path planning of free-form sheet metal stamping process, compared to strategies using pure reinforcement learning technologies. The successful instantiation of this method also implies the potential of the development of intelligent free-form sheet metal stamping process.
Funder
China Sponsorship Council
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献