Capturing and incorporating expert knowledge into machine learning models for quality prediction in manufacturing

Author:

Link PatrickORCID,Poursanidis Miltiadis,Schmid Jochen,Zache Rebekka,von Kurnatowski Martin,Teicher UweORCID,Ihlenfeldt Steffen

Abstract

AbstractIncreasing digitalization enables the use of machine learning (ML) methods for analyzing and optimizing manufacturing processes. A main application of ML is the construction of quality prediction models, which can be used, among other things, for documentation purposes, as assistance systems for process operators, or for adaptive process control. The quality of such ML models typically strongly depends on the amount and the quality of data used for training. In manufacturing, the size of available datasets before start of production (SOP) is often limited. In contrast to data, expert knowledge commonly is available in manufacturing. Therefore, this study introduces a general methodology for building quality prediction models with ML methods on small datasets by integrating shape expert knowledge, that is, prior knowledge about the shape of the input–output relationship to be learned. The proposed methodology is applied to a brushing process with 125 data points for predicting the surface roughness as a function of five process variables. As opposed to conventional ML methods for small datasets, the proposed methodology produces prediction models that strictly comply with all the expert knowledge specified by the involved process specialists. In particular, the direct involvement of process experts in the training of the models leads to a very clear interpretation and, by extension, to a high acceptance of the models. While working out the shape knowledge requires some iterations in general, another clear merit of the proposed methodology is that, in contrast to most conventional ML, it involves no time-consuming and often heuristic hyperparameter tuning or model selection step.

Funder

Fraunhofer-Gesellschaft

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Industrial and Manufacturing Engineering,Software

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3