1. Abiodun, O. I., Jantan, A., Omolara, A. E., Dada, K. V., Mohamed, N. A., & Arshad, H. (2018). State-of-the-art in artificial neural network applications: a survey. Heliyon, 4(11), e00938.
2. Abu, M., Amir, A., Lean, Y., Zahri, N., & Azemi, S. (2021). The performance analysis of transfer learning for steel defect detection by using deep learning. Journal of Physics: Conference Series, 1755(1), 012041.
3. Bowles, C., Chen, L., Guerrero, R., Bentley, P., Gunn, R., Hammers, A., Dickie, D. A., Hernández, M. V., Wardlaw, J., & Rueckert, D. (2018). Gan augmentation: Augmenting training data using generative adversarial networks. Preprint retrieved from https://arxiv.org/abs/1810.10863.
4. Burrascano, P. (1991). Learning vector quantization for the probabilistic neural network. IEEE Transactions on Neural Networks, 2(4), 458–461.
5. Buslaev, A., Iglovikov, V. I., Khvedchenya, E., Parinov, A., Druzhinin, M., & Kalinin, A. A. (2020). Albumentations: Fast and flexible image augmentations. Information, 11(2), 125.