Adaptive self-learning mechanisms for updating short-term production decisions in an industrial mining complex

Author:

Kumar Ashish,Dimitrakopoulos Roussos,Maulen Marco

Abstract

AbstractA mining complex is an integrated value chain where the materials extracted from a group of mineral deposits are sent to different processing streams to produce sellable products. A major short-term decision in a mining complex is to determine the flow of materials that first includes deciding which handling facilities to send the extracted materials and then determining how to utilize the processing facilities. The flow of materials through the mining complex is significantly dependent on the performance of and interaction between its different components. New digital technologies, including the development of advanced sensors and monitoring devices, have enabled a mining complex to acquire new information about the performance of its different components. This paper proposes a new continuous updating framework that combines policy gradient reinforcement learning and an extended ensemble Kalman filter to adapt the short-term flow of materials in a mining complex with incoming information. The framework first uses a new extended ensemble Kalman filter to update the uncertainty models of the different components of a mining complex with new incoming information. Then, the updated uncertainty models are fed to a neural network trained using a policy gradient reinforcement learning algorithm to adapt the short-term flow of materials in a mining complex. The proposed framework is applied to a copper mining complex and shows its ability to efficiently adapt the short-term flow of materials in an operational mining environment with new incoming information. The framework better meets the different production targets while improving the cumulative cash flow compared to industry standard approaches.

Funder

National Sciences and Engineering Research Council (NSERC) of Canada CRD

NSERC Discovery Grant

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Industrial and Manufacturing Engineering,Software

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Grinding mill optimisation using grind curves and continuum-armed bandits;Engineering Applications of Artificial Intelligence;2024-10

2. Sustainable open pit mining through GHG-conscious short-term production scheduling;International Journal of Mining, Reclamation and Environment;2024-09-10

3. Machine learning for open-pit mining: a systematic review;International Journal of Mining, Reclamation and Environment;2024-06-20

4. Cognitive manufacturing: definition and current trends;Journal of Intelligent Manufacturing;2024-06-20

5. A reinforcement learning approach for selecting infill drilling locations considering long-term production planning in mining complexes with supply uncertainty;Mining Technology: Transactions of the Institutions of Mining and Metallurgy;2024-04-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3