Smart sheet metal forming: importance of data acquisition, preprocessing and transformation on the performance of a multiclass support vector machine for predicting wear states during blanking

Author:

Kubik ChristianORCID,Knauer Sebastian Michael,Groche Peter

Abstract

AbstractIn consequence of high cost pressure and the progressive globalization of markets, blanking, which represents the most economical process in the value chain of manufacturing companies, is particularly dependent on reducing machine downtimes and increasing the degree of utilization. For this purpose, it is necessary to be able to make a real-time prediction about the current and future process conditions even at high production rates. Therefore, this study investigates the influence of data acquisition, preprocessing and transformation on the performance of a multiclass support vector machine to classify abrasive wear states during blanking based on force signals. The performance of the model was quantitatively evaluated based on the model accuracy and the separability of the classes. As a result, it was shown, that the deviation of time series represents the key parameter for the resulting performance of the classification model and strongly depends on the sensor type and position, the preprocessing procedure as well as the feature extraction and selection. Furthermore, it is shown that the consideration of domain knowledge in the phases of data acquisition, preprocessing and transformation improves the performance of the classification model and is essential to successfully implement AI projects. Summarizing the findings of this study, trustworthy data sets play a crucial role for implementing an automated process monitoring as a basis for resilient manufacturing systems.

Funder

Bundesministerium für Wirtschaft und Energie

Technische Universität Darmstadt

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Industrial and Manufacturing Engineering,Software

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3